Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Small Methods ; 7(3): e2201477, 2023 03.
Article in English | MEDLINE | ID: covidwho-2173462

ABSTRACT

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.


Subject(s)
COVID-19 , Microfluidics , Humans , Microfluidics/methods , SARS-CoV-2 , Antibodies , Saccharomyces cerevisiae/genetics
2.
Antiviral Res ; 210: 105506, 2023 02.
Article in English | MEDLINE | ID: covidwho-2165061

ABSTRACT

Massive efforts on both vaccine development and antiviral research were launched to combat the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We contributed, amongst others, by the development of a high-throughput screening (HTS) antiviral assay against SARS-CoV-2 using a fully automated, high-containment robot system. Here, we describe the development of this novel, convenient and phenotypic dual-reporter virus-cell-based high-content imaging assay using the A549+hACE2+TMPRSS2_mCherry reporter lung carcinoma cell line and an ancestral SARS-CoV-2_Wuhan_mNeonGreen reporter virus. Briefly, by means of clonal selection, a host cell subclone was selected that (i) efficiently supports replication of the reporter virus with high expression, upon infection, of the NeonGreen fluorescent reporter protein, (ii) that is not affected by virus-induced cytopathogenic effects and, (iii) that expresses a strong fluorescent mCherry signal in the nucleus. The selected clone matched these criteria with an infection rate on average of 75% with limited cell death. The average (R)Z'-factors of the assay plates were all >0.8, which indicates a robust assay suitable for HTS purposes. A selection of reference compounds that inhibits SARS-CoV-2 replication in vitro were used to validate this novel dual-reporter assay and confirms the data reported in the literature. This assay is a convenient and powerful tool for HTS of large compound libraries against SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , High-Throughput Screening Assays/methods , SARS-CoV-2 , Drug Discovery , Virus Replication
3.
Nat Commun ; 13(1): 6644, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2106406

ABSTRACT

Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.


Subject(s)
COVID-19 , Viral Vaccines , Yellow Fever Vaccine , Cricetinae , Animals , Humans , SARS-CoV-2/genetics , Viral Vaccines/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
EBioMedicine ; 83: 104240, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2004031

ABSTRACT

BACKGROUND: The live-attenuated yellow fever vaccine YF17D holds great promise as alternative viral vector vaccine platform, showcased by our previously presented potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidate YF-S0. Besides protection from SARS-CoV-2, YF-S0 also induced strong yellow fever virus (YFV)-specific immunity, suggestive for full dual activity. A vaccine concomitantly protecting from SARS-CoV-2 and YFV would be of great benefit for those living in YFV-endemic areas with limited access to current SARS-CoV-2 vaccines. However, for broader applicability, pre-existing vector immunity should not impact the potency of such YF17D-vectored vaccines. METHODS: The immunogenicity and efficacy of YF-S0 against YFV and SARS-CoV-2 in the presence of strong pre-existing YFV immunity were evaluated in mouse and hamster challenge models. FINDINGS: Here, we show that a single dose of YF-S0 is sufficient to induce strong humoral and cellular immunity against YFV as well as SARS-CoV-2 in mice and hamsters; resulting in full protection from vigorous YFV challenge in either model; in mice against lethal intracranial YF17D challenge, and in hamsters against viscerotropic infection and liver disease following challenge with highly pathogenic hamster-adapted YFV-Asibi strain. Importantly, strong pre-existing immunity against the YF17D vector did not interfere with subsequent YF-S0 vaccination in mice or hamsters; nor with protection conferred against SARS-CoV-2 strain B1.1.7 (Alpha variant) infection in hamsters. INTERPRETATION: Our findings warrant the development of YF-S0 as dual SARS-CoV-2 and YFV vaccine. Contrary to other viral vaccine platforms, use of YF17D does not suffer from pre-existing vector immunity. FUNDING: Stated in the acknowledgments.


Subject(s)
COVID-19 , Viral Vaccines , Yellow Fever Vaccine , Yellow Fever , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Mice , SARS-CoV-2 , Viral Vaccines/genetics , Yellow Fever/prevention & control , Yellow fever virus/genetics
5.
iScience ; 25(8): 104705, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1914523

ABSTRACT

Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent patient with COVID-19, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 D614G, beta, gamma, and delta infection in vitro, with three mAbs neutralizing omicron as well. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta, and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 µg/mL, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.

6.
Viruses ; 14(6)2022 06 09.
Article in English | MEDLINE | ID: covidwho-1884392

ABSTRACT

To mitigate the massive COVID-19 burden caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several vaccination campaigns were initiated. We performed a single-center observational trial to monitor the mid- (3 months) and long-term (10 months) adaptive immune response and to document breakthrough infections (BTI) in healthcare workers (n = 84) upon BNT162b2 vaccination in a real-world setting. Firstly, serology was determined through immunoassays. Secondly, antibody functionality was analyzed via in vitro binding inhibition and pseudovirus neutralization and circulating receptor-binding domain (RBD)-specific B cells were assessed. Moreover, the induction of SARS-CoV-2-specific T cells was investigated by an interferon-γ release assay combined with flowcytometric profiling of activated CD4+ and CD8+ T cells. Within individuals that did not experience BTI (n = 62), vaccine-induced humoral and cellular immune responses were not correlated. Interestingly, waning over time was more pronounced within humoral compared to cellular immunity. In particular, 45 of these 62 subjects no longer displayed functional neutralization against the delta variant of concern (VoC) at long-term follow-up. Noteworthily, we reported a high incidence of symptomatic BTI cases (17.11%) caused by alpha and delta VoCs, although vaccine-induced immunity was only slightly reduced compared to subjects without BTI at mid-term follow-up.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Belgium , CD8-Positive T-Lymphocytes , COVID-19/epidemiology , COVID-19/prevention & control , Disease Progression , Follow-Up Studies , Health Personnel , Humans , Immunity, Cellular , Immunity, Humoral , Incidence , SARS-CoV-2/genetics , Vaccination
7.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1860155

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
8.
Molecular therapy : the journal of the American Society of Gene Therapy ; 2022.
Article in English | EuropePMC | ID: covidwho-1837975

ABSTRACT

The COVID19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an AAV-based COVID19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and nonhuman primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide potent tool in the ongoing fight against SARS-CoV-2. Graphical This manuscript characterizes and optimizes an AAV-based vaccine platform for several COVID-19 development candidates: durability of humoral response at high level for over 20 months, the ability to reduce the dose and protect from challenge in NHP and the versatility and robustness of the platform across different variant of concern antigens.

9.
Front Immunol ; 13: 845969, 2022.
Article in English | MEDLINE | ID: covidwho-1775680

ABSTRACT

To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.


Subject(s)
COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccinia virus/genetics
10.
Mol Ther Methods Clin Dev ; 25: 215-224, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1740074

ABSTRACT

New platforms are needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as a vector for several licensed vaccines and platform for novel candidates. On the basis of YF17D, we developed an exceptionally potent COVID-19 vaccine candidate called YF-S0. However, use of such live RNA viruses raises safety concerns, such as adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic disease [YEL-AND] and yellow fever vaccine-associated viscerotropic disease [YEL-AVD]). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in signal transducer and activator of transcription 2 (STAT2) signaling as a new preclinical model of YEL-AND/AVD. Compared with YF17D, YF-S0 showed improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering that yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence compared with readily transmitting YF-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other vaccines based on the same YF17D platform.

11.
Methods Mol Biol ; 2410: 177-192, 2022.
Article in English | MEDLINE | ID: covidwho-1575553

ABSTRACT

The SARS-CoV-2 pandemic has impacted the health of humanity after the outbreak in Hubei, China in late December 2019. Ever since, it has taken unprecedented proportions and rapidity causing over a million fatal cases. Recently, a robust Syrian golden hamster model recapitulating COVID-19 was developed in search for effective therapeutics and vaccine candidates. However, overt clinical disease symptoms were largely absent despite high levels of virus replication and associated pathology in the respiratory tract. Therefore, we used micro-computed tomography (µCT) to longitudinally visualize lung pathology and to preclinically assess candidate vaccines. µCT proved to be crucial to quantify and noninvasively monitor disease progression, to evaluate candidate vaccine efficacy, and to improve screening efforts by allowing longitudinal data without harming live animals. Here, we give a comprehensive guide on how to use low-dose high-resolution µCT to follow-up SARS-CoV-2-induced disease and test the efficacy of COVID-19 vaccine candidates in hamsters. Our approach can likewise be applied for the preclinical assessment of antiviral and anti-inflammatory drug treatments in vivo.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , Animals , COVID-19/prevention & control , Cricetinae , X-Ray Microtomography
12.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1450584

ABSTRACT

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Models, Animal , SARS-CoV-2
13.
PLoS Pathog ; 17(4): e1009500, 2021 04.
Article in English | MEDLINE | ID: covidwho-1197396

ABSTRACT

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.


Subject(s)
COVID-19/metabolism , Respiratory System/metabolism , Respiratory System/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/transmission , Coronavirus 229E, Human/metabolism , Furin/metabolism , Humans , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , Peptide Hydrolases/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Temperature , Virus Internalization , Virus Replication/physiology
14.
Nat Genet ; 53(4): 435-444, 2021 04.
Article in English | MEDLINE | ID: covidwho-1123140

ABSTRACT

The ongoing COVID-19 pandemic has caused a global economic and health crisis. To identify host factors essential for coronavirus infection, we performed genome-wide functional genetic screens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E. These screens uncovered virus-specific as well as shared host factors, including TMEM41B and PI3K type 3. We discovered that SARS-CoV-2 requires the lysosomal protein TMEM106B to infect human cell lines and primary lung cells. TMEM106B overexpression enhanced SARS-CoV-2 infection as well as pseudovirus infection, suggesting a role in viral entry. Furthermore, single-cell RNA-sequencing of airway cells from patients with COVID-19 demonstrated that TMEM106B expression correlates with SARS-CoV-2 infection. The present study uncovered a collection of coronavirus host factors that may be exploited to develop drugs against SARS-CoV-2 infection or future zoonotic coronavirus outbreaks.


Subject(s)
COVID-19/genetics , CRISPR-Cas Systems , Genome, Human/genetics , Genome-Wide Association Study/methods , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Bronchoalveolar Lavage Fluid/cytology , COVID-19/epidemiology , COVID-19/virology , Cell Line, Tumor , Cells, Cultured , Coronavirus 229E, Human/genetics , Epidemics , Epithelial Cells/virology , Gene Expression , Host-Pathogen Interactions , Humans , Proviruses/physiology , SARS-CoV-2/physiology , Virus Internalization
15.
Nat Commun ; 11(1): 5838, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-933686

ABSTRACT

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , STAT2 Transcription Factor/metabolism , Signal Transduction , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cricetinae , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/metabolism , Lung/pathology , Lung/virology , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2 , STAT2 Transcription Factor/genetics , Virus Replication
16.
Proc Natl Acad Sci U S A ; 117(43): 26955-26965, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-841910

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus has infected millions of people of which more than half a million succumbed to the viral disease, COVID-19. The urgent need for an effective treatment together with a lack of small animal infection models has led to clinical trials using repurposed drugs without preclinical evidence of their in vivo efficacy. We established an infection model in Syrian hamsters to evaluate the efficacy of small molecules on both infection and transmission. Treatment of SARS-CoV-2-infected hamsters with a low dose of favipiravir or hydroxychloroquine with(out) azithromycin resulted in, respectively, a mild or no reduction in virus levels. However, high doses of favipiravir significantly reduced infectious virus titers in the lungs and markedly improved lung histopathology. Moreover, a high dose of favipiravir decreased virus transmission by direct contact, whereas hydroxychloroquine failed as prophylaxis. Pharmacokinetic modeling of hydroxychloroquine suggested that the total lung exposure to the drug did not cause the failure. Our data on hydroxychloroquine (together with previous reports in macaques and ferrets) thus provide no scientific basis for the use of this drug in COVID-19 patients. In contrast, the results with favipiravir demonstrate that an antiviral drug at nontoxic doses exhibits a marked protective effect against SARS-CoV-2 in a small animal model. Clinical studies are required to assess whether a similar antiviral effect is achievable in humans without toxic effects.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Hydroxychloroquine/therapeutic use , Pyrazines/therapeutic use , Amides/pharmacokinetics , Animals , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Disease Models, Animal , Disease Transmission, Infectious/prevention & control , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Hydroxychloroquine/pharmacokinetics , Lung/drug effects , Lung/pathology , Lung/virology , Pyrazines/pharmacokinetics , SARS-CoV-2 , Treatment Outcome , Vero Cells , Viral Load/drug effects , COVID-19 Drug Treatment
17.
Nature ; 586(7830): 509-515, 2020 10.
Article in English | MEDLINE | ID: covidwho-792975

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Ferrets/virology , Humans , Mesocricetus/virology , Mice , Pneumonia, Viral/immunology , Primates/virology , SARS-CoV-2 , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL